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In this work we expand our research on the global behavior of non-linear oscillators
under external and parametric excitations. We consider a non-linear oscillator
simultaneously excited by parametric and external functions. The oscillator has a bias
parameter that breaks the symmetry of the motion. The example that we use to illustrate
the problem is the rolling oscillation of a biased ship in longitudinal waves, but many
mechanical systems display similar features. The global behavior of the system is
characterized by bifurcation diagrams that identify the instabilities that appear when one
of the excitations is slowly varied. The locus of these instabilities provides the stability
boundaries of the system in a parameter space of physical significance. We found that
the dynamics of the system significantly depends on the bias parameter, which confirms
previous experimental observations. We also found a very interesting effect, which appears
to result from the interaction between the parametric and external responses in a nonlinear
manner and causes the primary response to lose stability. All results were obtained through
analog simulation of the governing equation.
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1. INTRODUCTION

The governing equation of a one-degree-of-freedom (one-DOF) oscillator typically shows
excitations that appear as either an inhomogeneity in the differential equation or a
time-varying coefficient. These types of excitations are usually called external and
parametric excitations, respectively. A number of important problems commonly include
both types of excitations. Examples include the vibration of slightly curved rods under a
periodic axial force [1] and the roll motion of a biased ship in longitudinal waves [2].
In this work, we expand previous research on non-linear oscillators being excited either
externally [3] or parametrically [4]. On this occasion, we consider a non-linear oscillator
simultaneously excited by parametric and external functions. Furthermore, this oscillator
has a bias parameter that breaks the symmetry of the motion. Our aim is to gain a
qualitative understanding of the dynamics by identifying the instabilities that appear when
one of the excitations is slowly varied. Even on an analog computer, unstable solutions
can appear and with time disappear, or merge with another solution. At the same time,
we characterize the loci of these instabilities as the stability boundaries of the system in
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a parameter space of physical significance that can occur in reality. In this case, the analysis
is carried out for a parameter space that includes broad portions of the amplitude and
frequency of the external excitation, at a fixed level of the parametric excitation for the
case of a model boat previously used [5]. The simulation of the differential equation is
carried out in an analog computer which has, in the past, given good accuracy for the
external [3] and the parametric excitations [4]. In recent publications, Liaw and Bishop [6]
have investigated the non-linear coupling of heave–roll and ships rolling analytically and
numerically, and Perez and Sanguinetti [7] have investigated experimentally the roll in
longitudinal waves. They both found the danger of transitions from small oscillations to
large oscillations by changing a parameter such as frequency. They also found complicated
behavior, but most of the results correlated well with the analytical solutions.

2. GOVERNING EQUATION

We can follow either Wright and Marshfield [5] or Bolotin [1], to derive the equation
of motion for either the rolling motion of a ship or the bending of a rod. We present here
the results for the case of the ship, since this governing equation is more general, and
its application is of fundamental importance for safety and design considerations.
Furthermore, the specific mechanisms that cause a vessel to capsize are still not fully
understood [8, 9], so we hope that this analysis can shed some light on this fundamental
problem.

As shown in Figure 1, the rolling motion of a biased ship can be described by the
absolute roll angle f(t) and the relative roll angle u(t) with respect to the local wave slope
a(t). Applying Newton’s second law, we find that the equation of motion can be written
as

(I+ dI)u� +D(u� )+K(u, t, g)=B− Iä, u=f− a,

where I is the roll moment of inertia, dI is the added moment of inertia due to the fluid,
which is assumed to be constant [5], and B is a constant bias moment, which might be
due to steady wind, or a shift in cargo, or water or ice on deck. The righting arm (restoring
moment) K(u, t, g) this time depends on the angle in which the wave hits the ship and the
relative velocity of the wave with respect to the ship. We follow Blocki [10] and obtain
the following relation for the rolling of a ship due to heave–roll coupling

K(u, t, g)=v2[u+ a3u
3a5 + u5 + hu cos (V	 t+ g)],

where t is time and

h=Kuzaz /2v2
0

Figure 1. A ship rolling in longitudinal waves with local wave slope a. The ship is biased at an angle f, so
that the relative angle with respect to the wave is u=f− a.
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represents the magnitude of the parametric excitation, which depends on the coupling
cofficient Kuz and the amplitude of the heaving motion az . A simple one-DOF system is
used to describe the basic features of the motion [11]. If we consider the case of waves
approaching the ship from the side at an angle g, the one-DOF resulting motion can be
described by

u� +2m̃u� + m̃3u� 3 +v2
0 [u+ a3u

3 + a5u
5 + hu cos (V	 t+ g)

=v2
0 [us + a3u

3
s + a5u

5
s ]+

amI
(I+ dI)

(V	 )2 cos (V	 t+ g). (1)

The ship is biased in the sense that it is subjected to a constant heeling moment that
tilts the vessel by an angle us . The wavelength is assumed to be large compared with the
ship’s width. The waves are also assumed to be sinusoidal with a maximum wave slope
am . Typical waves in the Atlantic Ocean have lengths ranging from 50 to 100 m and heights
that are independent of the wavelength [12]. The symbol I represents the roll moment of
inertia and dI is the added moment of inertia due to the fluid. The angle g represents a
phase difference between the wave and the heave motion of the ship. The parameter h
represents the amplitude of the parametric excitation. It depends on the magnitude of the
coupling coefficient and the amplitude of the heaving motion [11, 12]. Equation (1) can
be simplified by scaling time according to t=v0t, resulting in

u� +2mu� + m3u� 3 + u+ a3u
3 + a5u

5 + hu cos (Vt)= us + a3u
3
s + a5u

5
s +F cos (Vt), (2)

F= amIV2/(I+ dI),

where us is the bias angle and represents the external excitation characterized by the
maximum wave slope am , the wave frequency V, the ship’s inertia I and the fluid’s
added inertia dI. The inertia factor is computed with the relation I=mK2. Using the
transformation equation u= us + u, we write equation (2) as

ü+2mu̇+ m3u̇3 + u+ b1u+ b2u2 + b3u3 + b4u4 + b5u5 + hu cos (Vt)= f cos (Vt), (3)

where b1 =3a3u
2
s +5a5u

4
s , b2 =3a3us +10a5u

3
s , b3 = a3 +10a5u

2
s , b4 =5a5us , b5 = a5 and

f=F− hus . Equation (3) is general and can model a wide variety of oscillators. Our
interest is to study the effect of the external and parametric excitations on systems that
can be symmetric or biased. The parameters am , h and V are used to characterize the
response and stability of the system. One of the features of this systems is that equation
(3) lacks symmetry when us is not zero. For example, Wright and Marshfield [5] observed
experimentally that the dynamic response and stability of ship models with positive and
negative bias angles are different. We characterized ship oscillations for bias angles of
us =26° and our results fully support the above observation.

3. STABILITY AND BIFURCATION OF SOLUTIONS

Equation (3) is a non-linear ordinary differential equation. To determine the global
behavior of the system described by this equation, we observe the solutions shown by the
analog computer for different values of the parameters. These solutions can be transient,
and disappear given some time of simulation. In order to be sure that a particular solution
is not a transient, we use different methods of observing the solution. Verhulst [13] has
given definitions to characterize the stability and asymptotic stability of a periodic solution.
A periodic solution can be visualized as an orbit in phase space. In this case, a
two-dimensional space V can be defined transversal to the closed orbit. The orbit intersects
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V at point h, which implies that h is mapped into V by the phase flow. This map is the
Poincaré map P and h is a fixed point of P. In this case, we can state the following.

3.1. 

For the system described by equation (3) with a periodic solution f(t), transversal set
V and Poincaré map P with fixed point h, the solution f(t) is stable if, for each oq 0,
we can find a d(o) such that

>x0 − h>E d, x0$V c >Pn(x0)− >E e, n=1, 2, 3, . . . .

The solution f(t) is asymptotically stable if it is stable and if there exists a dq 0 such that

>x0 − h>E d, x0$Vclim
n:a

Pn(x0)= h.

The above definitions can be implemented by using the so-called Floquet theory [14]
numerically to determine if a particular orbit is stable. In the current case, if the solution
is stable the analog computer will show it. If it is not stable, there would be a jump to
another solution or to an overflow, given enough time.

The best understanding of the behavior of the system can be obtained when the key
coefficients of the differential equation are used as parameters and the qualitative effects
of slow changes in these parameters are understood. The locations in the parameter space
at which the response has qualitative changes are defined as bifurcation points. At these
locations the behavior of the system changes, and the new behavior might bring about
catastrophic consequences.

In this paper, stable solutions of equation (3) were searched for by using am and V

as parameters. An analog computer system was used to simulate equation (3), and the
response observed was processed by using fast Fourier transforms (FFT) and Poincaré
maps to identify the bifurcation points.

4. DYNAMICS OF UNBIASED SYSTEM

The response of the system described by equation (3) for the unbiased case is
presented first for us =0, g=0, h=0·3 and the other coefficients as given in Table 1.
The simulation results are summarized in the bifurcation diagram shown in Figure 2,
where the loci of the instabilities are shown. When a parameter (V or am ) is varied
across a boundary in the direction marked by the arrow, the current solution will
become unstable and the system response will move to a new solution. The bifurcation
diagram shows the behavior of three basic attractors (solutions in phase space), which
are stable near V=1 and V=2. In Figure 3 is shown a phase diagram of the two
stable attractors at V=0·856 and am =0·048. These attractors are T-periodic; that is,
they correspond to the primary response of the system. The small attractor loses stability
when the parameters are varied across the boundary marked S1 in Figure 2, which is
the locus of saddle-node bifurcations [15] that make the system jump to another attractor.
If the crossing occurs for values of am q l2, the solution becomes unbounded (the

T 1

System parameters

v0 m m3 a3 a5 dI

5·278 0·086 0·108 −1·402 0·271 0·25I
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Figure 2. A bifurcation diagram from analog computer simulations of equation (3) for g=0, us =0° and
h=0·3.

ship capsizes). For crossings with values of am Q l2, the jump is to the large attractor
in Figure 3. Similarly S2 is the locus of saddle-node bifurcations that produce a jump
from the large to the small attractor. The large attractor also undergoes a period-
doubling sequence to chaos [15] in the region between P1 and J1. In Figure 4 are shown
phase diagrams and power spectra of various attractors at selected locations in this region.
To the right of each phase diagram, two power spectra are shown. The bottom one shows
the frequency content of the excitation, and the top one shows the frequency content of
the response. In the dotted region of Figure 2, all initial conditions lead to unbounded
solutions. When J1 is crossed, the chaotic attractor loses stability and the system jumps
either to an unbounded solution or to the small attractor, depending on whether the
crossing occurs above or below l1.

The large attractor in Figure 3 also loses stability near V=2. Between P3 and P4, this
attractor is unstable. When P3 is crossed from left to right, the attractor undergoes a

Figure 3. The phase portrait of coexisting attractors at V=0·856 and am =0·048. Both attractors correspond
to the primary resonance.
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Figure 4. Phase portraits and power spectra of the attractor and the excitation at selected locations near the
primary resonance: (a) the T-periodic solution for V=0·983 and am =0·258; (b) the 2T-periodic solution for
V=0·966 and am =0·268; (c) the 4T-periodic solution for V=0·942 and am =0·282; (d) the 8T-periodic solution
for V=0·939 and am =0·284; (e) the chaotic attractor for V=0·937 and am =0·285.

period-doubling bifurcation and a jump to the subharmonic resonance is observed. When
P4 is crossed from right to left, another period-doubling bifurcation is observed with a
jump to the subharmonic response. Therefore, the primary resonance is unstable in the
region between P3 and P4. The third attractor represented in the bifurcation diagram in
Figure 2 is the subharmonic (or 2T-periodic) response near V=2, which is stable in
the region between P4 and J2. Selected attractors and their power spectra in this region
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Figure 5. Phase portraits and power spectra of the attractor and the excitation at selected locations near the
subharmonic resonance: (a) the primary response for V=2·158 and am =0·107; (b) the subharmonic response
for V=2·102 and am =0·113; (c) the subharmonic response V=1·920 and am =0·136; (d) the subharmonic
response for V=1·514 and am =0·218; (e) the 2T-periodic subharmonic response for V=1·505 and am =0·221;
(f) the chaotic attractor in the subharmonic response for V=1·480 and am =0·228.

are shown in Figure 5: (a) shows the principal-resonance response (top), (b) shows the
subharmonic resonance obtained after crossing P4 from right to left, (c) and (d) show
quantitative changes in the subharmonic response, (e) shows the subharmonic response
after a period-doubling bifurcation across P2, and (f) shows a chaotic attractor to the right
of J2.
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Figure 6. The bifurcation diagram from analog computer simulations of equation (3) for g=0, us =+6° and
h=0·3.

Figure 7. The coexisting attractors near the primary resonance for V=0·768 and am =0·217.

Figure 8. The coexisting attractors near the subharmonic resonance for V=1·758 and a=0·046.
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5. DYNAMICS OF BIASED SYSTEM

In Figure 6 is shown the bifurcation diagram obtained from an analog computer
simulation of equation (3) when the bias angle us is set to +6° and all other parameters
are left unchanged. In this case the dotted region is many times larger than that for the
unbiased system. The region of stability of the subharmonic response has shrunk, and the
primary and subharmonic responses only coexist in a narrow region between V=1·5 and
V=2·0.

Figure 9. Phase portraits and power spectra of the response and the excitation near the primary resonance:
(a) the T-periodic response for V=1·098 and am =0·228; (b) the 2-T-periodic response for V=1·098 and
am =0·231; (c) the 2T-periodic response for V=1·098 and am =0·245; (d) the appearance of broadband
frequency content in the 2T-periodic response for V=1·098 and am =0·248; (e) the chaotic attractor for
V=1·067 and am =0·249.
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The curves S1 and S2 represent saddle-node bifurcations of the large and small
attractors of the primary resonance, which produce jumps in the corresponding attractors.
In Figure 7 are shown the two stable attractors for V=0·768 and am =0·217. In Figure 6,
S1 represents the locus of jumps from the large to the small attractor. Similarly, S2

represents the locus jumps in the small attractor, which take the system either to the large
attractor if am is below the black dot or to an unbounded solution if it is above this point.
The curve P1 represents the locus of period-doubling bifurcations, which lead the system

Figure 10. Phase portraits and power spectra of the response and the excitation near the subharmonic
resonance: (a) the primary response for V=2·319 and am =0·058; (b) the subharmonic response for V=1·997
and am =0·078; (c) the subharmonic response for V=1·794 and am =0·097; (d) the 2T-periodic attractor of the
subharmonic response for V=1·780 and am =0·099; (e) the 4T-periodic attractor of the subharmonic response
for V=1·763 and am =0·100.
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Figure 11. The bifurcation diagram from analog computer simulations of equation (3) for g=0, us =−6° and
h=0·3.

to either a period-doubling sequence to chaos in the portion of the curve enclosed by
E1 or directly to an instability in the rest of the curve. The instability results in an
unbounded solution when am is above the black dot on the lower part of P1, or a jump
to the subharmonic attractor when it is below it. In Figure 8 are shown the coexisting
attractors of the primary and subharmonic response at V=1·758 and am =0·046. The
curve E1 in Figure 6 represents the locus of unbounded solutions. For values of V to the
left of the black dot on E1, a bifurcation sequence to chaos such as the one shown in
Figure 9 is observed. For crossings of E1 between the black dot and the point of intersection

Figure 12. Phase portraits of the attractors near the primary resonance and the power spectra of the response
and excitation: (a) V=0·702 and am =0·063; (b) V=0·827 and am =0·057.
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Figure 13. The coexisting attractors near the subharmonic resonance for V=1·698 and am =0·061.

with P1, a saddle node is observed, making the period-2T solution unstable, and an
unbounded solution occurs.

The stability region of the subharmonic is also shown in Figure 6: it is narrower than
that in Figure 2. Crossing P3 from right to left causes the primary resonance to lose stability
and the subharmonic becomes stable. Across P2, the system undergoes period-doubling
bifurcations leading to a chaotic attractor, which becomes unstable when E2 is reached,
leading to an unbounded solution. In Figure 10 are shown selected phase planes and power
spectra of the above changes in the solution: (a) shows the primary resonance, (b) and (c)
show the subharmonic response after crossing P3, (d) shows a period doubling in the
subharmonic after crossing P2, and (e) shows a second period doubling in the subharmonic
response.

In Figure 11 is shown the bifurcation diagram obtained from an analog computer
simulation of equation (3) when the bias angle us is set at −6°, and all other parameters
are unchanged. In Figure 12 are shown the attractors and power spectra of the primary
resonance. Across curve S in Figure 11, the small attractor undergoes a saddle-node
bifurcation that leads to an unbounded solution. Across P1 the large attractor undergoes
period-doubling bifurcations. In the portion of P1 enclosed by E1, a sequence of period
doubling to chaos is observed; in the rest of the curve unbounded solutions occur after
the first period doubling. The large attractor also undergoes period-doubling bifurcations
across P4. The subharmonic response undergoes period-doubling bifurcations across P2,
P3, and P5. Unbounded solutions are observed after crossing P2 and E2. The coexisting
attractors that are found between P2 and P4 are shown in Figure 13.

6. CONCLUSIONS

From the previous results, we observe that the dynamics of the system significantly
depends on the bias parameter, which confirms the experimental observations of Wright
and Marshfield [5]. However, it is not possible to conclude which case is more stable, since
that depends on the local region of the parameter space under consideration. Nevertheless,
the diagrams generated illustrate the overall behavior and the regions of the parameter
space where instabilities appear. In Figure 2 are shown the essential features of the primary
and subharmonic responses that we analyzed in previous work [3, 4]. However, a very
interesting effect appears, which seems to result from the interaction between the
parametric and external responses, causing the primary attractor to lose stability around
V=2. This behavior is shown in Figures 2, 6 and 11, in spite of the differences in their
bifurcation diagrams.
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The implications for the physical system are clear. A non-linear system of the
type considered, undergoing even very low amplitude oscillations, can suddenly develop
large amplitude responses if small excitation changes move the system through a
bifurcation.
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